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Abstract

We use partial differential equation models to examine the effects of cross-edge incursions by a predator
on the persistence or extinction of a patch-resident prey species. For each of two predator-incursion profiles
(namely, a constant incursion distance and a constant loss rate for predators during incursions), we ex-
amine the conditions under which the predator can (and cannot) influence the critical patch size of a prey
species. © 2002 Published by Elsevier Science Inc.

Keywords: Edge-mediated effect; Cross-boundary subsidy; Predator incursion; Critical patch size

1. Introduction

Increasing attention among ecologists to spatial aspects of population and community dy-
namics (e.g. [1]) has included a specific focus on the ways in which habitat edges can change
species interactions [2,3]. Differential effects of habitat edges on species’ growth, mortality, or
movement can affect the strength and outcome of many kinds of species interactions, including
pollination [4], herbivory [5,6], predation [7,8], and parasitism [9,10]. Previous theoretical treat-
ments have examined the roles habitat edges play in interspecific competition [11,12], disease
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transmission [13], and outbreak dynamics [14]. However, generally lacking from such theoretical
studies has been an explicit examination of how habitat edges (through their effects on species’
movement and survival) can influence predator—prey dynamics.

In contrast, a variety of field studies of edge-mediated predator—prey interactions already exist,
and these motivate our theoretical examinations. Perhaps the most widely studied category of
effects involves bird nest predation near edges, particularly in landscapes featuring a mix of forest
and rural habitats [7,15,16]. In many such cases, the predators are generalist foragers (e.g., foxes,
crows, domestic animals) for whom the habitat edge may form a travel corridor [17]. Patch
residents in contrast are often much more specialized in their habitat requirements [18]. When
placed in a spatial context, this specialist-generalist dichotomy raises the interesting point that
cross-edge foraging, which may be a strong mortality source from the prey’s perspective, may
have only weak or incidental benefits for the predator (e.g., [16,19]).

Several studies have characterized predator density profiles across habitat edges, either directly,
through movement or sighting records of the predators themselves [17], or indirectly, with pre-
dator activity densities inferred from patterns of depredation on natural or artificial bird nests
distributed across the edge (e.g., [7,15,20-22]). Various attributes of edge structure (e.g., edge
permeability or edge contrast) and the composition of local predator assemblages influence
patterns of predator incursion [23,24]. Such factors can govern both how deeply foraging pre-
dators penetrate into the patch and the degree of mortality they exert on patch residents [16]. For
example, patches with edges that are relatively impermeable to foraging predators (e.g., freeway-
bounded forest tracts as in Ref. [19]) can feature elevated population growth rates for resident
species compared with more accessible patches.

Here we use partial differential equation models to examine the effects of cross-edge incursions
by a predator on the persistence or extinction of a patch-resident prey species. For each of two
predator-incursion profiles (namely, a constant incursion distance and a constant loss rate for
predators during incursions), we examine the conditions under which the predator can (and
cannot) influence the critical patch size of a prey species.

2. Modeling and general analysis of models
2.1. Modeling set-up

We envision a situation in which a distinguished species (the prey) inhabits a patch @ of some
preferred habitat. The patch Q is surrounded by matrix habitat populated by a second species (the
predator) which can feed upon the prey species in Q. In our scenario, the prey is significantly
vulnerable within  to predator incursions from the surrounding matrix. However, we assume the
predator is generalist having sufficient resources outside € so as to maintain a fixed population
density in the matrix surrounding Q. Consequently, while the predator may have a substantial
effect on the population dynamics of the prey in @, the contribution of the prey in £ to the overall
diet of the predator is negligible, thus mirroring the biological examples in Ref. [16,19].

Our fundamental aim in considering the preceding set-up is to ask whether a model for such a
predator-prey interaction can predict the extinction of the prey in Q and if so what are the
dominant features in the model determining the extinction. We model the predator—prey inter-
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action within the habitat patch Q as follows. First we postulate that the prey density v is governed
by the diffusive logistic model with predation
o

— D2 _XY, - -
-a—-t~——DV v—i—r(l K)v g(v,p)p in Q x (0,00),

o (2.1)
v+ (1 ——/)’)—6—;7-: 0 on 92 x (0,00),

where § € [0, 1] and 0v/0n = Vv - 7 is the outer normal derivative of v in the # direction along the
boundary 0Q of the patch Q. The value of f in the boundary condition indicates the balance
between the tendency of the prey to remain in the patch when it approaches the boundary and the
tendency of the prey to be lost from the patch through the boundary. When § = 0, the patch is
completely insulating, whereas when f = 1, the boundary may be regarded as immediately lethal.
In (2.1),

P o
ox2  0y?

represents random movement of the prey through Q by diffusion. D is the diffusion coefficient. The
local population dynamics for the prey are assumed to be of the logistic form (1 — (v/X))v, where
r is the intrinsic growth rate for the prey and K is its carrying capacity. The predation term in the
equation is g(v, p)p, where p denotes the predator density and g(v,p) the predator’s functional
response to the prey.

We choose the logistic form for the local population growth term so that the predictions of
model (2.1) in the absence of a predation term are clear cut and well understood. So doing
provides an established starting point from which we can elucidate the effects of predator in-
cursion into the patch Q. (This particular choice is not crucial, however; see below.) It is well-
known (see, for example, [25]) that in the absence of predation, (2.1) predicts persistence of the
prey when /D > A,(pB) and extinction when »/D < A;(B), where 4,(f) is the principal eigenvalue of
the negative Laplacian —V? on Q for the given boundary condition, i.e., the unique necessarily
non-negative number for which

Vi =

~Vw=iw in®Q,

ﬂw+(1~ﬂ)%=0 on 9Q, (2.2)

admits a solution w with the property that w > 0 in Q. Note that the condition »/D > 4,(f) is
equivalent to having ¢ > 0 where ¢ is the unique real value for which

DV?w+rw=ow in @,

2.3
ﬁw+(1—/3)%%=0 on 042, 23)

admits a solution w which is positive in Q. The logistic form is by no means the only choice for
local population growth that would result in this sharp dichotomy between persistence and ex-
tinction in the absence of predation. Indeed, if the logistic term is replaced with a term f(v)v with
the properties that £(0) > 0, £(0) > f(v) for v positive and f(v) < 0 for v large, the corresponding
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model without predation would predict persistence if f(0)/D > 4,(f) and extinction if f(0)/
D < A1(f). Moreover, if in addition, f'(v) < 0 for v > 0, the prediction of persistence is a result of
having a globally attracting positive equilibrium, as is the case with a logistic growth term (see, for
example, [25]).

Now consider the issue of persistence versus extinction in the predictions of model (2.1) with the
predation term g(v,p)p included. Note first that any reasonable functional response term has
the property that g(0,p) = 0 for all p > 0 and frequently has g(v, p) is non-decreasing in v. Hence
the predation term in (2.1) is expressible in the form

Og -
g(v,p)p = 3 (0, p)op + (v, p)p,

where g(v, p) is higher order in v. Second, we have postulated that the prey in 2 makes a negligible
contribution to the overall diet of the predator and that the predator maintains a fixed population
density pp in the matrix habitat surrounding Q. As a result, we employ a dispersal equation in-
dependent of the prey density v to track the values of p in @ over time. (We shall examine some
specific possible scenarios shortly.) Solutions to such equations evolve to equilibria (possibly
spatially dependent) over time. Let p(x) denote a representative example of an equilibrium dis-
tribution of the predator density in €. Then arguing as in Ref. [26,27], we may assert that the prey
is predicted to persist in Q if ¢ > 0 when

DV*w +rw — %5— 0, p(x))p(x)w = ow in Q,
' (2.4)
pw + (1 —ﬁ)%—%}:O on 00,

admits a positive solution and that the prey is predicted to go extinct if ¢ < 0 when (2.4) admits a
positive solution. Notice that if %%(O, p) =0, the linearized problem (2.4) is identical to (2.3). In
such a case, the predictions of model (2.1) as regards persistence versus extinction of the prey are
unchanged from the case of no predatory incursion into 2. However, such does not mean that
predator incursion has no effect on the prey. Indeed, the asymptotic values of the prey density v
may be significantly reduced by virtue of the predation. (It is perhaps instructive to think of this
reduction as analogous to a reduced prey carrying capacity.) It is entirely possible that such
predator incursions could have consequences which are undesirable for the prey species. For
instance, the lowered prey densities could facilitate the invasion of an exotic which competes with
the prey into  which would otherwise not be possible. We shall not pursue this possibility further
in this paper, but we do plan to address this issue in subsequent work. The reader should note that
there are widely used functional responses of both types, i.e., with %‘5 (0,p) =0 and with
%%(0, p) # 0. Indeed, among the most familiar of all functional responses, Lotka—Volterra and
Holling Type II functional responses have %% (0, p) # 0 while Holling Type III functional responses
satisfy%% (0,p) = 0.

Since the focus of this paper is the effect of predator incursion into Q on the persistence of the
prey species, we are motivated by the preceding discussion to postulate for the remainder of this
paper that %‘; (0,p) # 0 for p > 0. The question remains as to how to arrive at p(x) for (2.4). We
offer two scenarios. The first possibility is that the predators disperse into 2 by simple diffusion
some distance 6 whereupon they encounter a ‘virtual interface’ where they (i) turn around, (ii) die or
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Fig. 1. Schematic diagram clarifying different components of a theoretical patch, shown here for the two-dimensional
case. The entire patch is denoted @, the portion into which the predator intrudes is Q5 and the predator-free core is
denoted by 2\Q;. The patch edge and the interface between the predator-free and predator-occupied areas are denoted
using 8. As used in the text, single bars enclosing the above symbols, such as || or |8€Q], denote the area or length
(respectively) of the region or boundary in question.

(iii) do one or the other of (i) or (i) with some probability. Let £ denote the set of points in £ of

distance < J from 0Q (see Fig. 1). Then the predator density is 0 in £\, and is governed in Qs by
p=dV%p in Q,
p=py on 0Q,

v+ (1 — y)g% =0 on 00Q;\00,

(2.5)

where y € [0,1] (if y =0, case (i) above holds; if y = 1, case (ii); if y € (0,1), case (iii)). Then
p(x) =0 in Q\Q; and is the equilibrium to (2.5) in Qs (the closure of ;). Notice that if the
predators simply turn around at the interface (y = 0), the constant value py must be the equi-
librium to (2.5) and hence p(x) is the step function given by
_JP x€ 55,_
px) {o % € Q\Gs.
In cases (ii) or (iii), the equilibrium to (2.5) depends in general on the geometry of Q. However, if
we specialize to one space dimension, we can give a precise formula for p(x). To this end, let
Q= (—¢,{), so that Qs = (—£,—L+ ) U (£ — §,£) and p(x) is symmetric about 0. Since V?p = p,,
in this case, equilibria to (2.5) are necessarily linear in Q;. So let p = mx + b. In case (ii), y = 1| so
that p =0 at —¢ 4+ and £ — 6. Then
po(=t+1) on [-£—£+ ),
px) =<0 on [+ d,¢ -],
p(5t+1) on[€—46,4).
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In case (i), yp — (1 —y)p' =0at £ -6, yp+ (1 —y)p =0 at —£ + 6 and p' = m. It follows that

A im0 — 0 +1 -9} on[ £, —L+ 48],
pl) =40 n (—+8,0—9),
ga {6 -0 +1-y} on[l-44.

The other possible scenario for predator incursion into £ we consider is to eliminate the ‘virtual
interface’ and instead assume a net death rate u for the predators as they move into Q. In this case,
the predator density in 2 is governed by

p_ o i
== dVp —up in Q x (0, 00), (2.6)

p=py on 9@ x (0,00).

In this scenario, p(x) is the equilibrium solution to (2.6). If Q is the one dimensional interval
(—2,0), p(x) is given by the formula

_cosh(y/p/dx)
PO) =P TaTan) cosh(/u/df)

for x € [—¢,4].
2.2. General analytic observations

As noted in the preceding section, the value of ¢ in (2.4) for which (2.4) admits a solution which
is positive in @ is the crucial factor in determining whether model (2.1) predicts persistence or
extinction of the prey species in Q. If ¢ > 0, the prediction is that the prey species will persist,
whereas if ¢ < 0, the model predicts extinction of the prey species. Having ¢ = 0 in (2.4) when
2.4 admlts a solution which is positive in @ suggests that the combination of parameters D, r,
px), & 5= (0, p(x)), B and Q in the model is critical in the sense that a small change in any one of these
factors may result in a reversal of the prediction of the model, either from persistence to extinction
or vice versa. A particularly useful line of inquiry of this sort that we shall pursue in a number of
different regimes is to view o = 0 as corresponding to Q2 being of ‘critical patch size’ (see [28,29]).
Before proceeding to analyses of critical patch size for Q, however, there are several general
observations we need to make.

First of all, note that (2.4) has variational structure. Consequently, ¢ can be expressed as the
supremum of a collection of Rayleigh quotients as in [30]. For § € [0, 1), the representation for ¢
takes the form

-D fQ ]V‘Pildx + fg (}’ - %%(O,p(x))p(x))t/lzdx - TD_% fag ‘pz ds
o= sup 5 ;
peirt2() fQ lﬁ'dx
y#0

(2.7)

where W'2(Q) is the Sobolev space of square integrable functions which are once weakly differ-
entiable in Q with square integrable weak derivatives. If § = 1, the last term in the numerator of
the Rayleigh quotient in (2.7) is undefined. Recall that § = 1 corresponds to a lethal boundary on
the habitat Q. In this case, we may modify (2.7) by restricting ourselves to the subspace I/I/O”z(Q) of
W'2(Q) consisting of those elements of W'?(Q) which vanish on 9Q. We obtain
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o= sup —DJo V| dx + Jo (r = %%(0,p(x))p(x))‘//2dx '

2
\ben'g'z(n) fQ l// dx
W#0

(2.8)

The preceding formulations have an immediate consequence. Note that if we do not restrict the
distance a predator can penetrate into the patch £, it is possible to have » — Z (0, p(x))p(x) < 0 on
all of Q. In this event, we see from (2.7) and (2.8) that ¢ < 0 independent of diffusion coefficient or
boundary condition, leading to prey extinction in €. Such a phenomenon of course would be very
likely on a sufficiently small patch @ through which predators may roam effectively at will. On the
other hand, if we do restrict the predator so that p(x) > 0 in Q; but p(x) = 0 on Q\Qs, the sit-
uation for the prey can be no worse than what would occur if the prey were restricted to Q\Qs by
having a lethal boundary 0(2\Q;). Consequently, if ¢ = ¢* > 0 when

DV*w +rw=ow in Q\Q;,
w=0 on 0(Q\Qs),
admits a solution w > 0 in Q\Qs, o in (2.4) should be positive when (2.4) admits a solution which
is positive in Q, independent of the value of § in the boundary condition. As a result, if ¢* > 0 in
(2.9), then the portion of the habitat Q not subject to predator incursion is larger than it has to be
in order for model (2.1) to predict persistence of the prey if the predators can penetrate up to a

distance of ¢ from 0Q into Q.
Now consider the special case where the prey is subject to a reflecting boundary. If

/Q <” - %% (0,p(X))p(x)> dx >0,

it can be shown (see, for example, [31]) that ¢ > 0 and model (2.1) predicts persistence of the prey
species in Q. In case the functional response g is independent of p and

20,56 =20, [ (r-E0.p00p0)) 5> 0

is equivalent to

;~>%§(O)- (ré-[/gp(x)dx)

(As noted in the legend to Fig. 1, |Q2| denotes the area of Q.) Thus model (2.1) predicts persistence
of the prey in this case when the prey’s intrinsic growth rate exceeds the product of the predator’s
marginal functional response at zero prey density and the average predator density over . If
p(x) <pp and p(x) = 0 on Q\Q,

mewzlfmw<M%L

so that model (2.1) predicts persistence of the prey species if
12]
12|

(2.9)

dg
/ >“a;(0) P
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Finally, note that ¢ is monotonically decreasing with respect to either p(x) or . For instance,
suppose the parameters D, r, g, f and Q are fixed in (2.1) and consider two predator penetration
densities p;(x) and py(x). If p)(x) <p2(x) in Q and o) and o, denote the corresponding ¢ values
for which (2.4) admits a solution which is positive in &, then ¢, > ¢;. In other words, an in-
creased predator penetration density exerts more pressure on a prey population. Likewise, a more
lethal boundary condition on @ exerts more pressure on a prey population. While neither of
these observations is at all surprising, they are useful in examining different assumptions about
p(x) and/or f§ on the basis of comparison with other choices, as we shall note in the following
section. '

3. Predator incursions and minimum patch size of refuge — particular cases

We explore three specific cases. First we investigate the case of a linear habitat into which
predators penetrate a fixed distance at a constant density. Second, we extend these results to two-
dimensional patches, including a specific treatment of predator incursions reaching a fixed dis-
tance into a square block of habitat. Lastly, we return to a one-dimensional habitat to study how
prey persistence is affected when we change the pattern of predator incursion from one involving a
fixed predation distance to one involving a net death rate for predators.

3.1. Predator penetration to a fixed distance within a linear habitat at constant density

In this case, predator penetration is at a constant density py a distance of ¢ into @ = (—¢,£), so
that Q5 is the union of the disjoint intervals (—¢, —£ + ) and (£ — ¢, £). Symmetry considerations
allow us to reduce (2.4) to the following problem on (0, £):

DY +rp=af on(0,f-95),

Dy, + (r — pogo)y = o on (£—6,8),

¥.(0) =0, (3.1)
Bur(£) + (1 = By (£) =0,

Y >0 on(0,9).

In 3.1), go = %(0, po) and the condition ,(0) = 0 reflects the symmetry of i on (—£, £).

The discontinuity in the local intrinsic growth rate of the prey species at £ — § induced by the
predator incursion means that the eigenfunction y of (3.1) cannot be twice continuously differ-
entiable at £ — §. However, the regularity theory of elliptic partial differential equations [32] does
guarantee that i is once continuously differentiable on [0,4]. On the subintervals (0,4 — §) and
(£ —46,0), (3.1) reduces to a constant coefficient second-order ordinary differential equation, the
solutions of which are basically linear combinations of either sines and cosines or hyperbolic sines
and hyperbolic cosines. The boundary conditions at 0 and £ plus the fact that  and ¥, must
match across the interface at £ — ¢ enable us to obtain ¢ in (3.1) as the o-coordinate of the
intersection of two appropriate curves (o, g(0)) and (o, f(0)), as follows. ‘

It should be clear that the ‘global’ growth rate ¢ for the prey species in  can never exceed its
local intrinsic growth rate in the absence of predator incursion (i.e., o <) and moreover, that
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o = ris possible only if 6 = 0 or py = 0 (i.e., there is no predator penetration into Q) and = 0 (no
dissipation of the prey occurs across the boundary of Q). As a consequence, we may assume that
o < r. Thus the eigenfunction i is a linear combination of

sin — and cos —
V"D~ D

on the interval (0,4 — §). The symmetry condition ,(0) = 0 forces ¥ to have the form

Y(x) = ¢ cos <\/7;—Gx>

on (0,£ — J). The form of ¥ on (£ — §, ) depends on whether ¢ + pygo — ¥ is positive, negative or
zero. When o + ppgo — » > 0, (x) takes the form

¢3 cosh < W(x - e>> + ¢y sinh ( (f-i’f;f—""—’i(x - e))

on (£ — §,£), whereas when o + ppgy — r < 0, Y(x) takes the form
5 COS ( Q:-%gﬂ:—a—)(x - Z)) + ¢ Sin ( gf_“_}_{(gﬂ:__ﬂz(x - E))

on (£ —4,%). In case ¢ + pogo — r = 0, Y(x) takes the linear form
mx + b

on (¢ — 6, %). If there is no dissipation of the prey species across the boundary of Q (i.e.,, f =0), ¢
in (3.1) must exceed » — ppgo so that we need only consider the form of y(x) on (£ — 8, £) corre-
sponding to o + pego — > 0. If § > 0, o in (3.1) may well be less than or equal to r — ppgy, so that
any one of the three forms for y(x) on (¢ — 4, ¢) is possible.

If we now employ the boundary condition at £ plus the fact that  and y, are continuous on
[0, 7] (and hence, in particular, are continuous at £ — §), we find that ¢ in (3.1) is the abcissa of the
unique point of intersection of the curves y = g(o,r,D,£,8) and y = f (0,7, pogo, D, f,6). Here

g(o,r,D,,5) = \/Z cot <\/’—"D_°" (- 5)) (3.2)

while the form of f depends on whether f > 0 or not. If § > 0,
f(U’ ¥, Po8o, D) ﬁ: 5)

(I — B)rcosh dt + fsinh it _ JoFpogo—r

(1 — B)<® sinh &t + ft cosh 67 £ D
if o+ pogo — 1 >0,

= -——%—é1+ 0 = if o+ pogo —r =0, (3:3)

(1 — B)pcosdp+ fsindp =D&y — 0
Bpcosdp — (1 — B)p*sindp (p - D )

. if6+pogo~l‘<0.
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If § =0, only ¢ + pogo — ¥ > 0 is'possible as noted above and hence f simplifies to

- =/ D [0+ Dogo — T
f(O', li ,pogo,D, O, 5) = o+ pogo — l"COth <5 D ) . (34)

We have averred that o in (3.1) is the abcissa of the unique point of intersection of the two
curves. Our ability to make such an assertion comes from our knowledge of the graphs of the
curves. It is a simple matter to check that g as defined in (3.2) is continuous and increasing on the
interval

with
Dn?
e p DES ) =0 3.5
\"Tae—oy ) (3:3)
and
lim g(o,r,D,¢,6) = +oo. (3.6)

It is a somewhat less simple matter (see [33] for a similar calculation), but one may also check that
J'in (3.3) is continuous and decreasing on the interval (» — pogo — Dpj, 00) with

lim  f(o,7 pogo,D,B,6) = +oo (3.7)

o= (r—pogo—Dpf)

and
lil;n Sf(o,7,pogo, D, B,6) = 0. » (3.8)
T --00

(The quantity p, in the above arises as the singularity of the expression
(1= pB)pcosdp + fsindp
Bpcosdp — (1 — B)p?sindp
from (3.3) in the interval (0,n/248]; i.e., p, satisfies

1 —

cotdp -—-—F—/zp. (3.9)
Notice from (3.9) that when § = 1, p, = n/26 while lim; ¢+ p, = 0. If we take p, = 0 when § = 0,
then f is continuous and decreasing on (r — ppgo — Dp3, 00) and (3.7) and (3.8) hold also in the
case when f'is defined by (3.4).) Consequently, the two curves have a unique point of intersection

corresponding to a value of ¢ with

D 2
o > max {r— n 2,r‘—pog0——Dp%}. (3.10)

4(¢ - 6)

An immediate consequence of (3.10) is that when » — pogo < 0, the right hand side of (3.10) is
negative whenever ¢ is large enough in comparison to £ allowing the possibility that ¢ may be
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negative. On the other hand, suppose that r — ppgo > 0. If r — pogo — Dp3 < 0, then p, < m/26
implies

2
— <
45
which in turn implies

b D
0 < =, .
2 \/ I — Po&o

r = pogo — 0,

If now
po M0, r-s< \EE
4(¢ - 6)° r2

so that

Dr

Consequently, to have the right-hand side of (3.10) negative when » — pygo > 0 requires that

Dn n | D
£ — \/;5 <0< j): f‘—pogo' (311)

Hence if

\/Bn T D
b— 4 = - \
r2 " 2\r—pgo

(3.11) cannot hold and ¢ in (3.1) is positive independent of 6 € (0,£). This last condition can be
expressed as

> Vbt <_1_ ___1_____> ,
¢>+vD S\t N (3.12)
and for this particular case, the model always predicts persistence of the prey species regardless of
the extent of predator incursion into Q = [—¢, ).

Suppose now that ¢ = 0in (3.1). Then the curves y = g(o,r,D, £, 6) and y = f(a,r, pogs, D, B, 8)
intersect when ¢ = 0. What happens if £ is increased? The curve y = f (o, ¥, pogo, D, B, 9) is inde-
pendent of £ and hence is unchanged. However,

Og 5 F—0
2=~ Sec (,/ ) (£ 5)><0

so that the curve y = g(o,r,D,£,5) moves downward. Consequently, it cannot intersect y =
f(o,r, pgo, D, o) until ¢ is at some positive value. So if ¢ = 0 and the parameter £ (half-length of
the habitat) is increased, ¢ becomes positive and the model predicts persistence of the prey species
when subject to the same extent and intensity of predator incursion but within a slightly larger
habitat. As a consequence, it is reasonable to regard twice the value of £ corresponding to ¢ = 0
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(i.e., 2¢) as a ‘minimum patch size’ necessary for the prey species to persist in the face of this form
of predator incursion into Q.

Let us now denote this critical value of £ by ¢£*, Then ¢* is a function of 6, f,D,r and the
predation-reduced prey intrinsic growth rate » — ppgy. As can be anticipated from the form of fin
(3.3), when B > 0, the explicit formula for £* varies as » — pygo < 0, ¥ — pygo = 0 or r — pygy > 0.
Indeed, setting ¢ = 0 in the formulae for g in (3.2) and f'in (3.3) and equating these quantities, we
find that £* satisfies the following Namely,

(54 fBoort { VBN TBon (/F) 1o ()
_I'OAO (,os (\/—_”DQ—E.E(;) (1~ /3 (r—ﬂo&o) bm( :%ﬁ%)]

1fr—-pogo>0=o'

5+ [Boott (511t} (3.13)

if}"—-pogo:OZO'

5+\/-C0t- (1 m\/pogTFmSl( "°g°_r5)+ﬁsinh( l'os'o-"‘s)'
[0 (25 o (V25 ) 1 (/B ot (/%) |

if r—pgo <0 =g,

‘e*

il

Cn

when f € (0, 1]. If =0, (3.3) reduces to (3.4), and in particular r — pygo < o = 0 when we cal-
culate for £*. In this instance, we obtain ™"

=54+ \/—B—cot“ ( |—L coth <1 J20E0 ”5)). (3.14)
r Dogo — T D

We noted earlier that when /'is given by (3.3), 0 > r — pogo — Dp3, where p, is the root of (3.9)
in the interval (0,n/25]. Consequently, if ¢ = 0,

r— poko
D

so that

I — Po&o
V™D =P

when r — pogo > 0. It follows that the arguments of the inverse cotangent in both (3.13) and (3.14)
are necessarily positive. This observation allows us to make the following basic estimate on the
size of £*, independent of the value of § € [0, 1].

2
< ,00,

Proposition 3.1. If ¢* is given by (3.13) or (3.14), then

v <5+\@(-§). (3.15)

Proposition 3.1 has a very important interpretation in this modeling scenario. The quantity
2(£ - 9) is the size of that portion of @ which is free from predator incursion. Proposition 3.1
implies that ¢ in (3.1) is necessarily positive when
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e=s+/2(2).

On the other hand, if an undisturbed habitat patch for the same prey species of length 2(¢ — §) has
an immediately lethal boundary, its overall growth rate & in such a patch fragment is determined
by

Dy +ry =3¢ on (0,f-97),

0) =0,
Wyl —96)=0,
¥ >0 on (0,—6).
In this case, & = 0 corresponds to
D/x
0§ = 1| —{ =
-5 r<2). (3.17)

As a consequence of (3.16) and (3.17), we may conclude that in this modeling scenario the size of
the habitat patch fragment free from predator incursion that is required to predict persistence of
the prey species is always less than the size of undisturbed habitat patch fragment needed to
predict persistence of the prey species when the habitat fragment has an immediately lethal
boundary.

We may also estimate £* somewhat more closely. Consider first the case in which » — pygo < 0.
In this case, if we let ¢ = 0 in the relevant formulae for fin (3.3) and (3.4) and calculate 0/ /96 for
0 > 0, we find that f'is increasing as a function on ¢ on (0, co) when

B> (1-p)y/ 25—,

decreasing as a function of § on (0, cc) when

p< (1- By /P,

and a constant in ¢ on (0, c0) when

_ Do8o — F
B=(1-p)y 25—

(Having

B> (1- )P

suggests that dissipation from the boundary condition is a stronger effect than the negative ef-
fective intrinsic growth rate that results from predation (i.e., from having » < pyg). When

B< (1-B)y /25—,

the relative impacts of the two effects are reversed, while if
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p=(1-py/PE

the two effects appear to have some sort of balance.) In any event, if

B> (1- p)y /25—,

we obtain that

1-p . . \/B r . D
[ e, L= —(f* — < = X .
7 fim f'<q/—cot <\/;(f 5)) lim f=y/ P (3.18)

It follows from (3.18) that

Pl () eseBor (52). oo

hence providing both upper and lower bounds on £*. Note in particular that the lower bound is
insensitive to f§ for

B> (1= B[

and that as f — 1,

e (5525)) =V

recovering the estimate in (3.15). If

0<p<(1-py/RE,

the inequalities in (3.18) are reversed. This time, however, if f — 0, (3.18) merely informs us that
£ > 4. In this case, (3.14) more closely tracks £* with respect to §. When

B Pogo — F
B=(1- )5

it is easy to see that

D
f=y .
Pogo — 17

so that

D ”
5= \/:cot'1 <,/ ! ),
r bogo — 7

as could be anticipated from (3.18).

)

ISI
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Now suppose r — pogo > 0 and consider £*. In this case, ¢ = 0 is possible only if > 0 and
hence f'is as given in (3.3) when » — pygo > 0 = ¢. By calculating 0/ /9, one finds that f increases
from (1 — f8)/f to +oco as ¢ ranges from 0 up to

(Note that for 6 = 6" and ¢ = 0, \/(r — pogo)/D corresponds to p, in (3.9).) Consequently, £* — §
satisfies

O<t—6< \/—?-cot"l <\/—l’;<1—;-/i>> (3.20)

with

i = P (5052)

and lims_ 5~ £~ 6=0.If 6 = 0,

1-8 cos (\/1/—D€>

B B \/7/Dsin <\/7752) ,

and y(x) in (3.1) is given by cos(1/r/D x), as would be expected in a habitat free from predator
intrusions. On the other hand, if § = §* and £ = £*, then

09 = o poin (2245 — ) = (1 - gy "L | L L08R 9))

satisfies
D¢xx+(’ﬂ_p0g0)¢zo on (6-5*a€)1
(ﬁ\,(g - 5*) = O»

Bo©) + (1 - B (&) =0, (3.:21)

¢>0 on(£-5,0),
for ¢ < 0. 6" in (3.21) corresponds to half the size of habitat required for the prey species to persist
when its intrinsic growth rate is reduced by predation to the lower but still positive value r — pygo

throughout the habitat. Indeed, if § = 6* and ¢ > §, then ¢ in (3.1) is necessarily positive. For ¢
satisfies (see [30])

{2 £, )
o= max =D fy rdx + fo r(x)y°dx

veciog, y#0 Ji 't dx
W(0)=0. Q1+ -B)W (8)=0

bl

RS x € (0,£-9),
’(X)_{"“Pogo, x € (£—9,0).
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Observe that if

(=5, xe(0,£—57),
¢ = {(/)(x), x€(l—5.0)

¢'(£ — 6*) = 0 so that ¢ € C'[0,£] and meets the boundary conditions of (3.1). So
. —D [{ 2 dx + [} r(x)d?dx

Jy #*dx
_ D it fy = pogo) 9P dr+ [y 92— 87) o [ (r — pogo) $7(¢ - ) dx
fo(].') dx
= ¢*(¢ — 87)[r(¢ - 9) + (r — pogo)(6 = 67)) > 0.
Jo & dx

Finally, suppose » — ppgo = 0 = ¢. Then one may still obtain inequality (3.19), as in the case
when r — pogo > 0. However, in this case £* — § ranges between the limits

o (5(52)

and 0 as ¢ ranges between 0 and oco. This change reflects the fact that when » — pygo = 0 predator
incursion may be a serious detriment to the species no matter how large the prey habitat might be,
in contrast to the case when » — pygo remains positive. Such an effect requires dissipation of the
prey species from the boundary of the habitat. Indeed, since

r-5= \/l;?cot" (@(ﬁ%@;ﬁ))

in this case, for any fixed 6 > 0, limp_o+ £* — 6 = 0. In particular, when there is no dissipation
from the boundary (i.e., when f = 0) and r — pygo = 0, if § > 0 is fixed, then ¢ in (3.1) is positive
for any choice of £ with £ > 4.

3.2. Predator penetration to a fixed distance within a planar habitat at constant density

Notice that p(x) in this example is the same as in sub-section 3.1. The difference is that now Q is
a general two-dimensional habitat. Consequently, we can no longer specify the general form of
on Qs and on 2\Q; and require them to match across the interface to obtain an equation for ¢ in
(2.4). However, the variational formulas for ¢ given in (2.7) and (2.8) still hold and may be made
somewhat more specific with p(x) identified as it is here. We find that ¢ is given by

~D [, |V dx + r [,y dx — pogo Jo, ¥ dx — 19_% o U ds
o= sup .
yeir!2(a) fg Yo dx
VEL

(3.22)

when 0< f < 1 and that ¢ is given by
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=D [o |V¥[*dx + 7 [, ¥ dx — pogo f, ¥ dx
o= sup

weir! 2(a) fg !//2 dx
0

(3.23)

when f§ = 1, i.e., when the boundary of Q may be regarded as completely lethal.
If we let i be the solution to (2.2) with f =1, we have by (3.22) and (3.23) that ¢(p) satisfies

fgé P dx
Jo ¥ dx

for any § € [0, 1]. On the other hand, if we let i be the solution to (2.2) with = 0, namely y = a
constant, we get from (3.22) that o(ff) satisfies

o(B) =z r — L (1)D — pogo (3.24)

12| DB [oQ]

>r— — 2
a(B) = r — pogo o] 1= 19| (3.25)
for any f € [0, 1). Since
, B ,
ﬁl}gl_ 5" “+00,

the right-hand side of (3.25) tends to —co as f — 1~. Consequently, when dissipation from the
boundary becomes a significant factor in the model (i.e., when f is close to 1), (3.24) (which is
independent of f§) gives a far more accurate lower bound on o¢(f) than does (3.25). On the other
hand, the presence of the term —A;(1)D in the right-hand side of (3.24) indicates that the situation
frequently is just the opposite when dissipation from the boundary is minimal (i.e., when f is near
0), i.e., the right-hand side of (3.25) exceeds that of (3.24).

We see from (3.25) that if

12| DB |8Q]
@ 1-p Q"

¥ > pogo + (3.26)
then the prey species can be expected to persist, (as g(f) > 0) and, moreover, if B is small, such a
requirement is rather reasonable as a ‘coarse but quick and ready’ rule of the thumb in under-
standing the effect of predator incursions into Q under this scenario. When boundary dissipation
becomes significant, we may in principle employ (3.24) in a similar manner. Of course, in practice,
we are limited by our knowledge of how the quantity‘ les e dx/ fQ' W dx depends on & and' the
geometry of Q. Consequently, to explore (3.24) further in this vein (i.e., set o(f) = 0), effectively
speaking we need to specify Q more precisely. Of course, there are choices of Q where i is ex-
plicitly known. For specificity, we take Q to be the square [0, 4] x [0, 4] so that iy may be chosen as

L TX Ty
sin—- sin—
A A

and

Qs = ([0,4] x [0,6]) U ([0,4] x [4 —6,4]) U ([0,8] x [0,4]) U (|4 — 8,4] x [0,4]).
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We find in this instance

Jo, ¥ dx 1 . (2m6 25\
= =l = | =sin{ — |+ 1—-— ] . 3.27
[0 dx <n (A > A> (3.27)
Since 4,(1) = 2n2/4? in this case, we have from (3.27) that (3.24) becomes
212D 1. [2%6 26\
O'(ﬂ) =Zr— 12 +p0g0<<;t' sSm (7) +1—7> -1> (328)

Using the expansion

- L, 1 7
Sinx =x — +—5—!x +O(x'),

we have that for §/4 small that

1 . (2716 26\° 8,6\ 5\
(o () 1-2) =3 ().
where the O((5/4)°) term is positive for 6/4 small. It follows from (3.28) that

21D 8n’poge [ 6\°
O‘(ﬁ) >l‘—"—;1“2—————3——-<2> . (329)

Now suppose that o(f) = 0. Assume also that r — (2r2D/4?) > 0 so that » — 2, (f)D > 0 for-
any f§ € [0, 1]. This last ensures that having o(f) at its critical threshold is not solely attributable to
boundary dissipation. From (3.29) we get that
3(A4% — 2n2DA)

gn?
is a necessary condition for predator incursions to threaten the persistence of the prey species in Q
for /4 small.

Poged’ > (3.30)

3.3. Predator penetration into a linear habitat with exponentially decaying density

In this example, p(x) is the equilibrium solution

cosh(+/u/d x)
po cosh(+/u/d £)

to (2.6) when we revert to the one-dimensional habitat Q = (—¢,£). The variational formula (2.7)
in this case reduces to

a(f) = sup { (3.31)

petrh2(-66)
Y#0

=D [, dx + [2,(r — gop(0)P dx — 2L 10P(6) + ¥ (~0)]
[f 0 dx '

If we let = 1 in (3.31) (i.e., ¥ is the eigenfunction for —V? on (-4, £) subject to homogeneous
Neumann boundary data) and use the fact that p(x) is even, we obtain the estimate
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o) > | (2 — 200 /e cosh (\/u/d x> & 208 /2€
0 cosh (x/u/dé) 1-p
o tanh/u/d¢  Dp
= F— Pogo r———“/dg a—p

Notice now that if there is no predator intrusion into € (so that we can assume p, = 0), then
a(f) = 0 in (3.32) forces

Dp
< .
r(1-§)
It follows that if £ > D/r, boundary dissipation alone cannot lead to a loss of persistence in the
prey population in Q for any f € [0, 1/2]. So let us assume £ > D/r and f € [0,1/2]. We have

Dp
(1 - p)

Moreover,

tanh \/p/d £
Vu/dl

is strictly decreasing in £ (or, for that matter, in px) with
/ d / /)
lim tanh y/p/d ¢ pld =1 and lim tanh yu/d ¢ ydt = 0.

v Jujd l = INEY.

Clearly,

(3.32)

>0

tanh \/u/d £ < D

7
Pogo ,——-“ 7d L 7

for any £ above a threshold depending on pogo, 1t/d and D/r. If we let 7 denote this threshold, then
<L

As in the previous example, the lower estimate on o(f) in (3.32) ceases to be meaningful as
f — 1 since then

- Df
(1 - p)
for any fixed £. Consequently, we make a different choice of i/ in (3.31), as follows. Let 0 < <2,

and consider (—{,£). Any function ¥ € Wy ((~£,8)) can be extended to a function
Y € W'2((—¢,£)) by defining

b(x) = { Wx), xe (-4,

0 otherwise.

— —00

It follows from (3.31) that
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-D éwﬁidx%— ¢ r— p(x)go)Y* dx
o(f) = sup ) Ef"fi LL0l4
veir 2(-Ed) f_ilﬁ dx
y#0
D[Pt [Lr -5 J*dx
> sup J-i¥s ﬂ.+~f-f(r v (3.33)
g 2(-Eh) f—Z l//2 dx
U0
for any constant
5> cosh cosh \/p/d ¢ dl
cosh Vi/ de
The last term in (3.33) is the principal eigenvalue for the problem
DV + (r—p)p =0o¢ in (—2,9),
¢ =0 ond((~£17)),
which has the value
b tr— 5
T
Provided
. cosh cosh \/p/d ¢ ‘
Pos * cosh NIEEA
it follows that
, .
- 2 h
o(f) > _Dn +Iﬂ_~pogocos \/,u/dé. (3.34)

42 cosh\/p/d £

In order for the right-hand side of (3.34) to be positive (and hence guarantee persistence of the
prey population), we must have

S Dr? cosh cosh /u/d ¢ l
-

+

40 g cosh\/u A

As £ decreases,

coshw/u/ di
cosh Vu/de

decreases with
h Z
lim pogo " Viu/d Pogo

0 " cosh Vijdt  cosh+/ujd e’

So if
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P& r>p Cosh w/y,/ l
cosh NI Pos % cosh Vuld L

for small enough {. However, as # decreases Drni? /4¢* increases with
2

lim —— = +o00.
i0 402

Consequently, having

Dr? cosh \/ di

r>—+ g

402 ®cosh/p/d ¢ Vu/d e

for some £ € (0, £) is a balancing act. The predator density in this case decays exponentially as we
move away from the edge of (—£, £). So by considering a subhabitat (—¢, £) the effect of predatory
incursion is markedly diminished. However, to estimate ¢(f) from below in this way (i.e., to
derive (3.33) from (2.7)), mathematically we needed to view the subhabitat as having a lethal
boundary and such a boundary effect becomes decidedly more and more pronounced as the size of
the subhabitat shrinks. So, in order for this approach to estimating ¢(f) from below to work (i.e.,
to guarantee that o(f) > 0), we want a ‘mid-size’ subhabitat far enough away from the edge of
(—£,2) to take advantage of the mediation in effects of predator incursion yet not so small that a
prey population on the subhabitat would be decimated by a lethal boundary imposed on the
subhabitat. Note that in order for the method to imply that o(f) > 0 it is necessary that

Po8o

g cosh(/u/d £)

Notice that (3.35) is equivalent to

£ > \/%cosh"l (@)

and can arise in several ways:

(3.35)

. a reduction in the predator density outside 2 (a lower py);

. a reduction in the rate of diffusion of the predators into the habitat (a lower d);
. an increase in the mortality rate of the predator species in Q (a larger w);

. an increase on the size of Q itself (a larger ¢); or

. a reduction in the predator’s attack rate on the prey (a lower g).

B W -

It is possible to maximize the right-hand side of (3.34) with respect to Z € (0, £) and then to use
this information to obtain an upper bound on the minimum patch size (2£*) of refuge needed in
this case for a prey population to persist in the presence of predator intrusions. However, the
result is sufficiently implicit so as not to be particularly informative. Consequently, we use (3.34)
as a starting point to obtain a lower estimate of ¢(f) that we can maximize with respect to
¢ € (0,7) rather easily and obtain a less sharp but more informative upper bound for £*. We begin
with the right-hand side of (3.34). It is easy to establish that
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m Lo, s 5
cosh \/gﬂ > <cosh \/;(E E)) cosh \[iﬁ

so that
er7~tz " g cosh \/u— d?) D1~|:2 3 Pogo _
402 * cosh \//u_ d?) 402 cosh(y/u/d (£ - 0))
Since

cosh <\ﬁ—;(€ - 12)> —14+4 > L (0~ &7 cosh (fé(z — E))

for some z € (£, ),

cosh <\/g(ﬁ— 2)) > L -0y

so that
_Dbn* Pogo . D 2pogod
4P cosh(\/ufd(t—0) = 4R p(e— B>

As a consequence, (3.34) implies

©*D _ 2pogod
42 e -0*

a(B) = r-

Maximizing the right-hand side of (3.36) with respect to £ leads to

[ S—)

173
d
1+2( o)
2 <eogod> /3
~ 20D
0 — 0= _._L_lﬁg
!
2

Substituting the values of £ and £ — £ in (3.37) into (3.36) leads to

D 1/ pgod\'"?, , 2/3
— = DY
4 +z< u (v°D)

2
=
\Y

r—

1/3
Dogod 2
{1+2<TC2,LLD> }/ﬁ}

(3.36)

(3.37)

(3.38)

It follows that ¢(f) > 0 for any £ large enough to make the right-hand side of (3.38) positive. As a

consequence we obtain the upper bound

1| Dn? 1<p0g0d>1/3 2/3
= | == n?
I\, (n’D)

7

r<

17377 1/2
1+2<p‘§g°d) H .
nuD

(3.39)
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4. Discussion

In the absence of predation, whether the prey persists or not is determined by a balance between
population growth rate in the patch and mortality at the patch edge. This balance, including the
effects of dispersal rate and boundary conditions on edge mortality, is often interpreted in the
context of critical patch size [25,29]. By reducing the prey’s effective growth rate, cross edge
predation can sensitively affect this balance. Consequently, in our modeling scenarios, as in some
real-life cases, predator incursions can pose a threat to the persistence of patch-resident species.
Note however that while the above is true for the class of functional responses examined here
(which includes those of Lotka—Volterra and Holling Type II forms) it is not true for predators
that exhibit prey switching (Holling Type III). We examine this difference, and related features, in
Ref. [34].

Because edge-foraging predators present an additional source of mortality for a patch-resident
prey species, they serve to increase critical patch size for the prey, regardless of boundary con-
ditions. For example, when predators forage a fixed distance from the edge, the critical patch size
for the prey is increased to a level no larger than the sum of the predators’ incursion distance and
the prey’s critical patch size in the absence of cross-predation. This is because the effect of pre-
dation can never exceed the effect of an immediately lethal patch edge located at the predator’s
maximum incursion distance. Note that this result also means that predators can induce a critical
patch size for the prey even when none would exist in the absence of predation (i.e., when the prey
has reflecting boundary conditions). Predators whose incursion features a constant loss rate rather
than fixed foraging distances also increase the critical patch size for the prey. In this scenario, we
were able to obtain upper and lower bounds on the magnitude of the critical patch size when
predators are present (Egs. (3.35) and (3.39)). Thus, for both types of predator foraging behaviors
explored here, patches in which a prey species could persist in the absence of predation may be too
small for the species to survive when predators exact a toll inside the patch.

Historically, ecology has tended to have something of a patch-centric view, in which local
dynamics are generally insulated from changes outside the patch. However, this perspective is
gradually changing. Increased emphases on spatially subsidized dynamics [35] exemplify in-
creasing recognition of the importance of larger scale processes. Another avenue of change in-
volves increased attention to the quality of the matrix habitat. For example, [36] provides an
overview of how the quality of matrix habitat surrounding a patch can influence the rate of
successful immigration to that patch. The authors then go on to explore the consequences of such
altered immigration patterns for metapopulation persistence, demonstrating an interesting,
counterintuitive result that enhancing matrix quality can sometimes increase the risk of global
metapopulation extinction. Empirical data are presented in Ref. [37] documenting the impacts of
different matrix habitats on dispersal of several butterfly species, emphasizing that matrix quality
can determine the ‘effective isolation’ of individual patches relative to potential sources of colo-
nists. In addition, our own analyses ([34], this paper) make clear that matrix quality, as indexed by
the presence of generalist predators capable of intruding into a patch, can also affect extinction
processes. Thus, changes in quality of matrix habitat can influence both colonization and ex-
tinction components of metapopulation dynamics.

An increased predator incursion distance, an increased density of predators foraging inside the
patch, or a combination of both will influence the predation pressure experienced by the prey in a
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local patch (Eq. (3.25)). Thus efforts to conserve patch-resident species may benefit both from
reductions in the densities of edge-foraging predators (e.g., through fencing) and from reductions
in how much of the patch is accessible to predators (e.g., through planting of buffer strips). The
benefits of such actions may be especially pronounced for remnant patches that are small in
comparison with the surrounding matrix. Moreover, for predators that exhibit a fixed incursion
distance, the degree to which the prey’s effective growth rate is reduced by predation depends
upon the ratio of the size of the predator-occupied zone to the size of the patch as a whole. As
patch sizes increases, this ratio decreases more slowly than the perimeter to area ratio, to which
prey mortality from cross-edge dispersal is proportionate. Consequently, predator incursions (and
other edge-mediated interactions with similar geometries) may have pronounced impacts on
patch-resident species over a much larger range of fragment sizes than do other kinds of edge
effects.

Cross-edge incursions by foraging predators represent a widespread type of ecological change
that regularly accompanies habitat fragmentation [2,3]. For us, a key issue has been how deeply
such predators penetrate into remnant patches. In many cases, features of the habitat edges
themselves may help set the limit on predator penetration distances. For example, habitat edges in
nature often involve gradual changes in biological or physical characteristics such as altered
vegetation structure or environmental regimes [38]. In tropical forests, recently cut edges some-
times quickly ‘seal up’ as a result of extensive vegetative growth in response to sunlight, thereby
preventing predator access to the patch over the long term [39,40]. Edge effects, whether due to
gradients in sunlight, predators, or other features, may extend different distances into a patch, and
as a result may influence different species in different ways. The ultimate effect of a habitat edge on
an ecological community may thus reflect a mix of factors. Yet, diverse edge-mediated effects
share an important commonality. Namely, because habitat fragmentation (and the resulting in-
creased ‘edginess’ of landscapes) facilitates cross-edge incursions from species in the matrix, the
ecological consequences of creating extensive habitat edges may be felt long before the habitat
itself is gone.
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